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In the previous study, the inverse perturbation method was used to identify structural dama- 

ges. Because all unmeasured DOFs were considered as unknown variables, considerable com- 

putational effort was required to obtain reliable results. Thus, in the present study, a system 

condensation method is used to transform the unmeasured DOFs into the measured DOFs, 

which eliminates the remaining unmeasured DOFs to improve computational efficiency. How- 

ever, there may still arise a numerically ill-conditioned problem, if the system condensation is 

not adequate for numerical programming or if the system condensation is not recalibrated with 

respect to the structural changes. This numerical problem is resolved in the present study by 

adopting more accurate accelerated improved reduced system (AIRS) as well as by updating the 

transformation matrix at every step. The criterion on the required accuracy of the condensation 

method is also proposed. Finally, numerical verification results of the present accelerated inverse 

perturbation method (AIPM) are presented. 
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1. Introduction 

In recent years, structural damage detection has 

become a very important research issue in the are- 

as of aerospace, naval, offshore, and nuclear engi- 

neering. The structural damage detection problem 

is very similar to the structural optimization pro- 

blem from the mathematical point of view-they 

are all inverse problems. Many researchers have 

related the change in dynamic characteristics (na- 

tural frequencies and mode shapes) to the chan- 

ge in structural properties (stiffness and mass) 
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and then have applied optimization theory to 

identify structural damages. Extensive reviews on 

the previous works in structural damage detec- 

tion are provided by Doebling (1996) and Farrar 

(1997). 

In the optimal matrix update method, the opti- 

mization theory is utilized to minimize the modal 

force errors while preserving the symmetry (Kam- 

mer, 1988), zero/nonzero pattern of system ma- 

trices (Smith and Beattie, 1991), or the load paths 

of a structure (Chen and Garba, 1988). However, 

these methods may smear the local structural chan- 

ges throughout the entire structure and thus mis- 

lead damage locations. Thus, Kaouk and Zimmer- 

man (1994) proposed a new approach by which 

the rank of structural damages can be minimized 

as an objective function. Unfortunately their ap- 

proach is not practical because the number of da- 
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mages needs to be known in advance in order 

to measure the rank of the damage (Doebling, 

1996). As an alternative to the optimal matrix 

update method, Lee and Shin (2002) and Cho et 

el. (2002) have recently introduced the structural 

damage identification methods based on experi- 

mentally measured frequency response functions. 

Recently, Choi (2001) adopted the inverse pe- 

rturbation method to resolve troublesome issues 

that have arisen in the previous studies. He ap- 

plied a nonlinear least squares method to detect 

structural damage, in which a greater number of 

constrained equations than unknown parameters 

was required for reliable results. If all unmea- 

sured DOFs are treated as the unknown variables, 

a considerable computational effort will be re- 

quired. Thus, he used a system condensation me- 

thod to transform the unmeasured DOFs into 

measured DOFs, which eliminates the unmea- 

sured DOFs to improve computational efficiency. 

However, there still remains a problem of numer- 

ical ill-conditioning. This problem may occur 

when the system condensation is not accurate 

enough for the least square method (Gafka and 

Zimmerman, 1996). 

The purpose of the present study is to resolve 

numerically il l-cqndition problem by using more 

accurate accelerated improved reduced system 

(AIRS; Kim and Kang, 2001) as well as upda- 

ting the transformation matrix at every step to in- 

stantaneously reflect the latest structural change. 

2. Inverse Perturbation Method 

2.1 General  formulation 

Because the change in dynamic characteristics 

are related to the modifications of the structural 

properties in both the structural optimal design 

and structural damage identification, applications 

the nonlinear inverse perturbation method can be 

applied to the structural damage detection pro- 

blems (Choi, 2001). 

For an undamaged structure, the general form 

of the finite element eigenproblem can be derived 

in the form of 

[k ] {  4, }=,~[m]{  4, } (1) 

where [k] and [m] are the stiffness and mass 

matrices, respectively, and fl and { 4, } represent 

an eigenpair. The structural damage may perturb 

the structure and the equilibrium equation for the 

perturbed system can be expressed as 

[k']{ 4,' }=A[m']{  4,'} (2) 

The stiffness and mass matrices of the perturbed 

system can be represented as a sum of those for 

undamaged structure system and their damage- 

induced perturbations given by 

[k'] = [k] + [Ak] (3) 
[m'] = Ira] + [Am] 

By using Eq. (3), Eq. (2) can be rewritten as 

( [ k ] + [ A k ] ) {  4 , ' / = A ' ( [ m l + E A m ] ) (  4"} (4) 

2.2 Parameterizat ion in structural and mo- 

dal changes 

There are two kinds of unknowns in the inverse 

perturbation problems : Structural parameters and 

response parameters. The former is related to 

physical parameters and the latter represents the 

unspecified (unmeasured) DOFs. 

The structural changes can be decomposed into 

J finite-element changes as 

Y 

[Ak] = }--], [Ake] [Am] = ~ [Ame] (5) 
e - I  e - 1  

where 

[Ake]=Esh(ae)] [Ame]=[s'(a~)] (6) 

a~--AP~/b~ (7) 

The non-dimensional  variable a'e represents the 

change in a physical parameter, and zero value 

means no damage-induced change in the physical 

parameter. To improve numerical stability, it is 

preferable to express them by the ratio of the 

parameter change to the original value. Further- 

more, each element change can be expressed as a 

sum of fractional changes of each physical para- 

meter, such as elastic stiffness and second moment 

of area (change of thickness or width). This rela- 

tionship may be linear or nonlinear, depending 

on the property of physical parameters. Thus, Eq. 

(6) can be expressed as 
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. a [ k ]  1 o~[k] ~+... (8) 
[Sh(ae) J = c~ae ae~ 2 ! oq~e 

aEm] 1 ~ [ m ]  ~ + . . .  (9) 
[ S m ( Ote ) ] = O aa ~- Ct e + 2 ] o~ OtZe 

The response parameters denote the natural fre- 

quencies (eigenvalues) and mode shapes (eigen- 

vectors). In general, measuring the changes in the 

frequencies are relatively easier than measuring 

the changes in the mode shapes. It is neither pos- 

sible nor desirable to measure all DOFs of each 

mode shape, especially for large structures. Be- 

cause only some DOFs can be measured, the rest 

must be determined such that they satisfy new 

equilibrium of the damaged structure. The unmea- 

sured DOFs can be considered as the additional 

unknown variables, called the response or char- 

acteristic parameters. 

[k ] {  ¢' } =  [k.o ks] { ~:[ } (10) 

In Eq. (10), the subscripts p and s indicate the 

primary (or measured) DOFs and the secondary 

(or unmeasured) DOFs, respectively. 

2.3 Inverse perturbation method 
Because the exact structural changes are not 

known and large part of DOFs cannot be mea- 

sured in advance, Eq. (1) cannot be satisfied due 

to incompletely measured data. 

Then, one may compute the residual error as 

{R}--[k']{¢'}-A'[m']{¢'} ( I I )  

This residual error should vanish at the new 

equilibrium of the perturbed system. This is only 

a necessary condition for satisfying the new equi- 

librium. When more than one mode is used, the 

residual errors can be expressed as 

[RL] = [ k ' ]  [ ~0L'] - [m'] [¢ , ' ]  lAd]  (12) 

where L is the number of modes used in the 

inverse perturbation. The dimension of the matrix 

Rz is n by L. The number of equations used in 

numerical programming is 

The number o f  equations = n × L (13) 

In structural optimization problems, structural 

changes [Ak] and [Am] are determined so as 
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to satisfy desired characteristic changes [A¢] and 

[A/~]. Because there may exist many feasible de- 

signs, the best design is determined by minimizing 

the objective function such as minimum weight or 

minimum change. As the structural optimization 

problem is an underdetermined problem, it usu- 

ally needs fewer equations than unknowns. How- 

ever, for unique damage, the structural changes 

determined should be unique to the given struc- 

tural damage detection problem. This requires 

more equations than unknowns. The number of 

unknown parameters is 

The number of' unknowns = ns × L + n~e (14) 
response structural 
parameters paranteters 

where ns and na~ are the number of es and 

structural parameters, respectively. The number of 

modes to be used for damage detection must be 

determined such that the number of equations 
given by Eq. (13) is larger than the number of 
unknowns given by Eq. (14). 

Substituting Eqs. (3) and (5-10) into Eq. (11) 
gives 

{ R }= ([k] -ZEm]i { ¢' }+ ([Ak] -Z[Aml )( ¢'} 
= ([k~]-Z[m~]){ ¢; }+/ [k~l-* [m, l){  ¢,'} 

+~([s~(a,>]-z[sp(~)]){¢;} (15) 
e=I  

+ ~, ([s~ (~,)]-z[s~"(a~) ]{ ¢/}) 
e=l 

2.4 Over-determined nonlinear problem 
The least squares method can be applied to the 

over-determined problem. In general, a regression 

that perfectly fits correct solution does not exist. 

However, the residual errors given by Eq. (15) 

can be minimized as 

L 

For improved numerical behavior, the normaliza- 

tion procedure can be used as follows : 

L 

M i n ( ~ {  R }r~ W]~ '{  R }j)  (17) 

where [ W]~ h) is the weighting matrix for the j - th  

mode and k-th iteration. The weighting matrix 

can be determined by the gradient of residual 

vector as (Luenberger, 1984) 
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[ w ] ? ' =  ([VR~ (X?') ] [VR, (XY ')) ] T) -, (i s) 
where XJ k) is the vector of unknown variables, 

which consists of structural parameters and the 

j - t h  response parameters. As the computation of 

weighting matrix [ W]~ (~) at each step is expected 

to be quite expensive, the weighting matrix can be 

approximated as a diagonal matrix by using a 

new mode shape { ~b' }~. The elements along the 

diagonal are then given by 

Wii--- (~b~j) 2 (19) 

where the subscript i represents the components 

of each DOF consisting of a mode vector. After 

the normalization procedure, the minimization of 

residual forces is now just like the minimization 

of the residual energy error at each DOF. 

3. Accelerated Inverse Perturbation 
Method 

In practice, all DOFs cannot be measured and 

thus the unmeasured DOFs must be considered as 

the unknown variables in the damage detection 

procedure, which may degrade the computational 

efficiency. Thus, a system condensation method 

will be used to transform the unmeasured DOFs 

into the measured DOFs. This may improve the 

computation speed. However, one need to pay 

special attention to the high sensitivity of the non- 

linear least squares method to the transformation 

errors of the system condensation methods. 

3.1 System condensation 

The accuracy of the solutions obtained by sys- 

tem condensation depends on the selection of  pri- 

mary DOFs. It has been known that, even though 

a good selection of primary DOFs has been made, 
only one third of the eigenvalues calculated in the 

reduced subspace are reliable. 

A general eigenproblem can be expressed in 

partitioned form as 

[kt, t, kp/]~, ckt, }=k[mpp mt, sl{ ~bt,} (20) 
ksp k,~Jt  ~b~ Lrn~p m~J ~b~ 

The secondary DOFs { ~bs } are the DOFs to be 

condensed out. The relation between the primary 
and secondary sets is obtained from Eq. (20) as 

{ Cs }=-( [kss] -/l[mss])-1([ksp] -~[msp]) { Cp } (21) 
- [T (A) ] {  ~bp} 

where the transformation matrix [ T ( / I ) ]  is fre- 

quency-dependent. 

Increasing attention has been given to the im- 

provement of the transformation step, which is the 

main source of error in condensation. The matrix 

inversion in Eq. (21), containing unknown eigen- 

values, can be approximated as an infinite series 
given by 

([k,s] -,~[m~])-' 
(22) 

= ( [ I ]  +AEAs] +A2EA,]~+ -..) [&s]- '  

where 

[A~]=[kss]-~[m~s] (23) 

For  simplicity, higher-order terms are neglected. 

In Guyan's  static condensation, the mass asso- 

ciated with the secondary set is neglected, and the 

transformation becomes constant for all modes 

(Guyan, 1965). 

{ ~s}~---[kss] l[ksp]{ qSp}~ETo]{ qSp} (24) 

{ ~ }ap~= { ~p 
qbs}a,=[To]{~ ~bo }- - [  To]{ ~bt, } (25) 

I 

Equation (25) implies that the original n-d im-  

ensional system can be reduced by a linear com- 

bination of p bases that are column vectors of 

[Tc] .  By applying Eq. (25), Eq. (20) can be 
reduced in the form of 

EKe]{ dpp }=Ar[mc]{ qSp } (26) 

where 

(27) 
[Mc] = [ To] r I M ]  [ To] 

From Eq. (26), one may write the relation as 

~{ ~p }~,~r{ ~ }= ([m~]-'EKcll { ~p } (281 

Substituting Eqs. (23)-- (28)  into Eq. (22) 

yields 

{ ~s }app (29) 
= ([ To] + [ 7"1] + IT2] + [ T33 +- . - )  { ~bp },~pp 
[To]=- [&s]  l[&p] 
[ T, ]=[  &,]- ' ( [  m,,] + [ m,,] [ To]) ([ Mc]-'[ Kc]) 
[ Tz] = [As] [ 2"i] ([Mc]- '  [Kc]) (30) 
[ T,] = [A,] [T~] ( [Mc]- ' [Kz]) 
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which  is the A I R S  (Kim and  Kang,  2001).  It is a 

well k n o w n  fact tha t  the series converges  in lower 

modes  whenever  Ar is smal ler  t han  As which  is the 

lowest  e igenvalue  eva lua ted  with [kss] and [mss]. 
Cons ide r ing  more  terms in Eq. (29) may pro-  

vide fur ther  improved  results, possibly  with in- 

creased c o m p u t a t i o n a l  cost. However ,  t h r o u g h  so- 

me numer ica l  examples ,  cons ider ing  the terms up 

to the th i rd  order  expans ion  is found  to be suffi- 

cient,  which  is called AIRS3.  On the o ther  hand ,  

the improved  reduced system (IRS, O ' C a l l a h a n ,  10' 
r - - , , - -  

1989) is based on  the f i r s t -o rder  a p p r o x i m a t i o n  1°° I X  

and  Gafka  and  Z i m m e r m a n  (1996) used it to con-  10' 
1 0  "z 

dense a damaged  system. 10' 

( 0 
[ m l [ T c ] [ D c ] { ¢ , }  (31) 1,,o' ¢ }o,,,,=.[ T4 + 0 

= [ T, ,s]{  ¢, } 1o' 
1 0  ~ 

[ [ 
~ To  + lo-° 

The  t r an s fo rma t ion  errors  by var ious  conden-  10 . . . .  

sa t ion  me thods  such as G u y a n ' s  reduct ion,  IRS, 

and  AIRS3  are compared  in F igure  1. The  t rans-  Fig. 1 

fo rmat ion  errors  are for the vert ical  d i sp lacement  

at node  14 of  the numer ica l  example  beam. The  

t r ans fo rma t ion  e r ror  is def ined as the abso lu te  

value  of  the difference be tween  the exact and 

t rans formed  secondary  DOFs .  

{ E } = ] {  es  } - {  es  }app I (33) 

F igure  1 shows that  the t r ans fo rma t ion  me thod  

requi r ing  h igher  modes  has  relat ively large error.  

This  is why only  lower modes  are cons idered  as 

Mode 1 Mode 2 Mode 3 Mode 4 

Mode  N u m b e r  

Trans format ion  errors E for  the t ranslat ional  

DOF at node 14 

Table 1 Transformation errors for the representative four DOFs 

Without  
With Condensation 

Condensation 
Mode DOF 

GR IRS AIRS3 
Exact 

(Guyan, 1965) (O'Callahan, 1989) (Present) 

IT 0.001537218 0.001537198 0.001537198 0.001537198 
6R 0.000577075 0.000577069 0.000577069 0.000577069 

1 
14T 0.249507234 0.249508750 0.249508750 0.249508750 
14R 0.001109933 0.001109885 0.001109885 0.001109885 

IT --0.011812130 --0.011807422 --0.011807419 --0.011807419 
6R --0.003083731 --0.003082264 --0.003082263 --0.003082263 

2 
14T --0.939882780 --0.940101181 --0.940101229 --0.940101229 
14R --0.001398256 --0.001391191 --0.001391189 --0.001391189 

1T 0.042238820 0.042130681 0.042130466 0.042130465 
6R 0.006700199 0.006665392 0.006665379 0.006665379 

3 
14T 0.949319552 0.950915250 0.950916611 0.950916613 
14R -- 0.007286399 -- 0.007340974 -- 0.007341014 -- 0.007341014 

1T --0.118102307 --0.117085994 -- 0.117080784 -- 0.117080845 
6R --0.007465129 -- 0.007139152 -- 0.007138988 --0.007138998 

4 
14T 0.829672351 0.836378078 0.836465661 0.836466512 
14R 0.018777605 0.018559340 0.018556390 0.018556360 

(T=t rans la t iona l  DOF, R=r o t a t i ona l  DOF) 
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accurately as possible in most condensat ion me- 

thods. Thus, cri terion on the bound of  modes 

should be provided for each condensat ion meth- 

od. For  the same example,  the t ransformation 

errors for some specific D O F s  are shown in Table  

1. Here, the term exact means that the mode 

shapes are evaluated by using full DOFs,  without  

condensation.  

3.2 Inverse perturbation method using AIRS 
It is important  to point  out that the system 

transformation and inverse perturbat ion methods 

are coupled. In damage detection, the measured 

data of  primary D O F s  are substituted into the 

equi l ibr ium equat ion and the unmeasured secon- 

dary D O F s  are obtained as 

{ ~/}=-([kL,]-A'Em'~])-X([kg]-X[m'~pl){ ~;} (34) 
-[T'(X, a,)]{ 

However ,  the t ransformation matrix used in the 

inverse perturbat ion method must be updated so 

that the structural changes can be instantaneously 

reflected in the analysis procedure. 

The t ransformation matrix in Eq. (34) can be 

simplified by using AIRS as a function of  struc- 

tural parameters only. 

[ T ' ( A ' ,  ae) ] ~-[ T, ORs (ae)] (35) 

As a result, the secondary DOFs  can be replaced 

with the primary D O F s  and the response para- 

meters can be successfully el iminated in the in- 

verse perturbat ion method. The final form of the 

residual error using system transformation is giv- 

en by 

{ R }-'-, [k] -X[ml . . . . ,  { ~' }+cAk ~ -~'[A,,~]; { ¢} 

~_( ik]_,~,[n,,] + ~([S,,(ae, ]_X[S,,,(ae) ]) )[ Tf,s]{ C~p, } (36) 

How many terms should be used for the trans- 

format ion matrix [T.~Rs ] is not yet determined, 

and there is a quest ion on the criterion for de- 

termining the accuracy of  a condensat ion method 

that is appropriate  Ibr an inverse per turbat ion 

method. Thus, based on the error  tolerance of  the 

nonl inear  least squares method, a simplified cri 

terion will be proposed as tb l lows:  Even for a 

structure without  any change, there may exist 

some residual error due to the t ransformation 

error in the condensat ion method. Thus, the norm 

of  the residual vector { R } should be smaller  than 

a pre-specified tolerance (e) as 

I1{ R (37) 

Figure 2 shows the effects of  random noise on 

the residual error. The random noise represents 

the t ransformation errors in the condensat ion 

method. In Fig. 2, the term "exact"  represents the 

residual error for the case of  zero random noise, 

computed using a 64-bit  double  precision. The  

residual error  can be considered as the numerical  

error. It is numerical ly observed that the residual 

error of  Eq. (36) increases as the magnitude the 

random noise increases. The expected magnitude 

the random noise for the tolerance level e=0 .1  is 

on the order of  10 -8 , which can serve as a guide 

for the choice of  the condensat ion method. Be- 

cause considering ever higher modes tends to 

increase the condensat ion error, one must confirm 

if the mode satisfies the cri terion of  Eq. (37). 

Figure 2 shows that AIRS3 satisfies the above 

tolerance condi t ion up to the third mode, while 

I R S ( A I R S I )  satisfies the above tolerance condi-  

tion only for the first mode. In general, the order 

of  A I R S  must be determined by the number  of  

modes to be considered. If higher modes are 

required in the inverse perturbat ion method, the 

order of  A I R S  must be increased. Table  2 shows 

the residual errors produced by the transforma- 

tion errors during system condensat ion.  

Fig. 2 

Magnitude of Random Noise 

Effects of random noise on the residual error 
IRI 
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Table 2 Residual errors due to the transformation errors in system condensation 

643 

Without 
With Condensation 

Condensation 
Mode DOF 

GR IRS AIRS3 
Exact 

(Guyan, 1 9 6 5 )  (O'Callahan, 1989) (Present) 

1T --0.015705895 8.44703 E-07 1.47755E-09 1.31293E-09 
6R --0.325633813 1.44844E-06 1.44355E-08 9.66247E-09 

1 
14T --2.571418012 --6.64375E-06 --3.53248E-09 -- 1.51704E-09 

14R --0.632357653 2.38446E-05 8.99599E-08 --2.53785E-08 

1T 4.429924530 -- 0.004756375 -- 2.70177 E-06 1.67100E-09 

6R 62.54439481 --0.022434156 --2.83122E-07 -- 2.79397E-08 
2 

14T 339.7999582 0.036873560 6.19004E-06 --2.86382E-08 
14R 29.12511988 --0.117752351 -- 3.09274E-05 2.04891 E-07 

1T -- 133.2319953 0.391336474 0.000585497 3.43539E-09 

6R -- 1136.622160 6.041255075 0.002298595 -- 5.19678 E-07 
3 

14T --2748.527803 -- 1.639287232 --0.002613661 --2.16533E-08 
14R 1222.612315 5.512731884 0.004087100 -- 5.02914E-08 

IT 1247.412397 --9.790983759 0.065582307 l. 10100E-08 

6R 3719.432169 -- 210.9049270 -- 0.623880744 -- 1.49012 E-08 
4 

14T -- 8999.167615 -- 27.55777317 -- 0.191453247 -- 2.32831 E-08 

14R --9738.002602 165.2275536 2.103506967 5.21541E-08 

(T----translational DOF, R=rota t ional  DOF) 

4. Numerical  Example 

For  a numerical  example,  a uni form canti lever 

beam is considered for structural  damage identi-  

fication. The beam has the cross sectional area 30 

A = 4 0  mm x 40 mm, length L = 1000 mm, Young '  20 

s modulus  E = 6 . 9  X 104 MPa,  and the mass densi-  

ty O = 2 . 7 X  10 9Ns2 /mm 4. The beam is assumed ~ 0 

to have the planar  transverse mot ion  only. Figure ~ 2~ 

3 shows the finite element model  for the beam, ~-30 

having 15 small  elements and 10 large elements -40 

(Papadopo lous ,  1998) with a total o f  fifty DOFs.  -~0 

For  the numerical  s imulat ion on damage identifi- 

cation,  four defects are placed on the 5th, 10th, Fig. 4 

19th and 25th elements by reducing the thickness 

he by 20%, 25%, 25%, and 30%, respectively, as 

shown in Fig. 4. 

The change  in the second moment  of  area, AIe, 

can be expressed as 

3 3 2 3 ~I~=I~( a~+ a~ +a~ ) (38) 

where Ie is the second momen t  o f  area before 

the damage and Cte is the structural  parameter  

Copyright (C) 2003 NuriMedia Co, Ltd 

Fig. 3 Numerical example : 25 finite elements model 

of a cantilevered beam 

[ ..... I . . . . . . . . .  1 . . . . . . .  
-25 -25 

2 3 4 5 6 7 8 9 !011  1 2 1 3 1 4 1 5  76 : 7 " 8 1 9  23 2122  23 24 25 
Eleme'~t Number 

Pre-specified locations and magnitudes of the 

changes in beam thickness 

indicat ing the extent o f  the thickness reduct ion 

due to the damage.  They are defined by 

bhe a Ahe 
[ e :  12 ' a e :  he (39) 

The changes  in the element  stiffness and mass 

matrices can be expressed as 
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Table 3 Performance of the present method for the example problem given in Fig. 3 

Inverse Perturbation Method Accelerated Inverse Perturbation 
(Choi, 2001) Method (Present) 

Number of 
305 25 

unknowns 
Required uumber of 

7 3 
modes 

Computation time 
3270 470 

(seconds) 

Fig. 5 Placement of ten sensors by using the succes- 

sive elimination method 

30 

2'3 

a, 
0 

6 -" 0 

2:3 

~ -33  

~49 

-59  

Fig. 6 

i .... , , , . [ , , . . i , l i , i l , , . . . i . , , l i l , ,  ! 

2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5  
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[Ak]  , =  [k] eA/~ = [k] e (33~+33e2+a~ 3) 

Ahe [ m] ~ae (40) JAm]e= [m] ~ =  

Substituting Eq. (41) into Fq.  (37) yields 

To identify the pre-specif ied defects in Fig. 4, we 

can acquire the D O F s  of  several changed mode 

shapes. In this study, ten t ranslat ional  D O F s  are 

selected by using the successive e l iminat ion (Shah 

and Raemund,  1982; Penny et al., 1994), and 

three mode shapes are used. The  fourth mode is 

excluded because it is found to violate the condi-  

tion of  Eq. (38) when the tolerance is 0.1. 

Fig. 6 shows the damage identification obtain- 

ed by using the first mode only. Though  the 

residual could be minimized to satisfy the toler- 

ance, the result is not satisfactory as insufficient 

number  of  equat ions are used. Thus, it is required 
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to use addi t ional  higher modes to obtain more 

reliable results. Figures (7-8) show that further 

improved results can be obtained by using more 

higher modes• Figure  8 clearly shows that the four 

pre-specified damages could be identified almost 

accurately when the lowest three modes are used. 

Some unwanted noise is inevitable for most error 

minimizing methods. Using higher modes may re- 

duce the distributed noise, possibly with increas- 

ed computa t ional  efforts required to compute  

over the third order of  AIRS.  Thus, there should 

be a compromise  between the accuracy and com- 

putat ional  efficiency. Table  3 compares  the com- 
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putational efficiencies of the present method and 

the original inverse perturbation method. 

5. Conclusions 

The inverse perturbation method has been ap- 

plied to structural damage detection. Because all 

DOFs cannot be measured in practice, the rest of 

the unmeasured DOFs should be considered as 

the unknowns, which may degrade the compu- 

tational efficiency of the damage identification 

analysis. Thus, the present study proposes the 

accelerated inverse perturbation method (AIPM) 

for structural damage detection, in which the 

AIRS is used to transform the unmeasured DOFs 

into the measured DOFs. A criterion on the 

required accuracy of the condensation method to 

be chosen is also proposed. It is shown that the 

criterion could depend on the tolerance of the 

numerical method and the number of modes used 

in the solution process. In addition, it is numeric- 

ally shown that the order of AIRS can be deter- 

mined by applying the criterion proposed in this 

study. Finally, a numerical verification of the 

present AIPM is conducted. The rank deficiency, 

which is another unsolved numerical problem, 

will be the research issue in the on-going study. 
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